31AH Midterm Exam Solutions

November 13, 2018

1. Let A be a 2×2 matrix. For each of the following statements give a proof or a counterexample.
(a) If $A^{2}=0$, then $A=0$.
(b) If $A^{2}=A$, then either $A=0$ or $A=I$.
(c) If $A^{2}=I$, then either $A=I$ or $A=-I$.

Solution. Each of the statements is false.
(a) If

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

then $A^{2}=0$ but $A \neq 0$.
(b) If

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

then $A^{2}=A$ but $A \neq 0$ and $A \neq I$.
(c) If

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

then $A^{2}=I$ but $A \neq I$ and $A \neq-I$.
2. Let S be a square with vertices V_{1}, V_{2}, V_{3}, and V_{4}, labeled counterclockwise. Let G be the graph with vertices V_{1}, V_{2}, V_{3}, and V_{4} and whose edges consist of the edges of S together with the diagonal connecting V_{1} and V_{3}. Compute the number of paths in G traversing 4 edges in succession ${ }^{1}$ that (i) start at V_{1} and end at V_{1}, (ii) start at V_{1} and end at V_{2}, (iii) start at V_{1} and end at V_{3}, (iv) start at V_{1} and end at V_{4}.

[^0]Solution. The answers to (i), (ii), (iii), and (iv) are given by the first column of A^{4} which we know is given by $A^{4} \vec{e}_{1}$. As the adjacency matrix A of G is given by

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Using associativity and computing recursively,

$$
\begin{gathered}
A \vec{e}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] ; \\
A^{2} \vec{e}_{1}=A\left(A \vec{e}_{1}\right)=\left[\begin{array}{l}
3 \\
1 \\
2 \\
1
\end{array}\right] ; \\
A^{3} \vec{e}_{1}=A\left(A^{2} \vec{e}_{1}\right)=\left[\begin{array}{l}
4 \\
5 \\
5 \\
5
\end{array}\right] ; \\
A^{4} \vec{e}_{1}=A\left(A^{3} \vec{e}_{1}\right)=\left[\begin{array}{c}
15 \\
9 \\
14 \\
9
\end{array}\right] .
\end{gathered}
$$

Therefore, there are 15 paths of length 4 from V_{1} to $V_{1}, 9$ paths of length 4 from V_{1} to V_{2}, 14 paths of length 4 from V_{1} to V_{3}, and 9 paths of length 4 from V_{1} to V_{4}.
3. The following 4 points in \mathbb{R}^{3},

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \quad \text { and }\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],
$$

are the vertices of a parallelogram. Compute its area.
Solution. Form the vectors \vec{u}, \vec{v}, and \vec{w} that subtend from the first point to the other three points. Evidently,

$$
\vec{u}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \text { and } \quad \vec{w}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
$$

As $\vec{u}+\vec{v}=\vec{w}$, the parallelogram in question is spanned by the 2 vectors \vec{u} and \vec{v}. Consequently, the area of the parallelogram is $|\vec{u} \times \vec{v}|$. We compute that

$$
\vec{u} \times \vec{v}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Therefore, the area is $\sqrt{2}$.
4. Determine whether the following matrix is invertible, and if so, compute its inverse.

$$
\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Solution. Let A denote the 4×4 matrix above. Then A is invertible if and only if the reduced row echelon form of the 4×8 matrix $[A I]$ has the form $\left[\begin{array}{ll}I & B\end{array}\right]$. Furthermore, in the case where A is invertible, $B=A^{-1}$. Therefore, we row reduce

$$
\left[\begin{array}{llllllll}
4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Swap rows 1 and 4 and swap rows 2 and 3:

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

Subtract 4 times the first row from the fourth row:

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -4 & 1 & 0 & 0 & -4
\end{array}\right] .
$$

Multiply row 3 by $1 / 2$:

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & -4 & 1 & 0 & 0 & -4
\end{array}\right]
$$

Subtract 2 time row 3 from row 2; also multiply row 4 by $-1 / 4$:

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 / 4 & 0 & 0 & 1
\end{array}\right] .
$$

Subtract row 4 from row 1:

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 / 4 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 / 4 & 0 & 0 & 1
\end{array}\right] .
$$

As this last matrix is in echelon form and the first 4 columns are the 4×4 identity matrix, it follows that A is invertible and

$$
A^{-1}=\left[\begin{array}{cccc}
1 / 4 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 / 2 & 0 & 0 \\
-1 / 4 & 0 & 0 & 1
\end{array}\right]
$$

5. Show directly from the definition that the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \text { and }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

are a basis for \mathbb{R}^{3}.

Solution. The vectors are a basis provided they are both linearly independent and span.
To see that the vectors are linearly independent, assume that $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ and

$$
x_{1}\left[\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0
$$

We wish to show that this assumption implies $x_{1}=x_{2}=x_{3}=0$. But (1) implies that

$$
\left[\begin{array}{c}
x_{1}+x_{2}+x_{3} \\
x_{2}+x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

or equivalently, the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
x_{2}+x_{3} & =0 \\
x_{3} & =0
\end{aligned}
$$

obtains. As the only solution to this system is $x_{1}=x_{2}=x_{3}=0$, it follows that the vectors are linearly independent.

To see that the vectors span, we need to show that each vector $\vec{b} \in \mathbb{R}^{3}$ can be represented as a linear combination of the vectors. Accordingly, assume that

$$
\vec{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \in \mathbb{R}^{3} .
$$

We wish to show that there exist scalars $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ such that

$$
x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

or equivalently, the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =b_{1} \\
x_{2}+x_{3} & =b_{2} \\
x_{3} & =b_{3}
\end{aligned}
$$

is solvable. As $x_{3}=b_{3}, x_{2}=b_{2}-b_{3}, x_{1}=b_{1}-b_{2}$ this system, the vectors span.

[^0]: ${ }^{1}$ such a path can traverse the same edge more than once

