31AH Midterm Exam Solutions

November 13, 2018

1. Let A be a 2×2 matrix. For each of the following statements give a proof or a counterexample.

- (a) If $A^2 = 0$, then A = 0.
- (b) If $A^2 = A$, then either A = 0 or A = I.
- (c) If $A^2 = I$, then either A = I or A = -I.

Solution. Each of the statements is false.

(a) If

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

then $A^2 = 0$ but $A \neq 0$.

(b) If

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

then $A^2 = A$ but $A \neq 0$ and $A \neq I$.

(c) If

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

then $A^2 = I$ but $A \neq I$ and $A \neq -I$.

2. Let S be a square with vertices V_1 , V_2 , V_3 , and V_4 , labeled counterclockwise. Let G be the graph with vertices V_1 , V_2 , V_3 , and V_4 and whose edges consist of the edges of S together with the diagonal connecting V_1 and V_3 . Compute the number of paths in G traversing 4 edges in succession ¹ that (i) start at V_1 and end at V_1 , (ii) start at V_1 and end at V_2 , (iii) start at V_1 and end at V_3 , (iv) start at V_1 and end at V_4 .

¹such a path can traverse the same edge more than once

Solution. The answers to (i), (ii), (iii), and (iv) are given by the first column of A^4 which we know is given by $A^4\vec{e_1}$. As the adjacency matrix A of G is given by

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Using associativity and computing recursively,

$$A \ \vec{e_1} = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix};$$
$$A^2 \ \vec{e_1} = A \ (A \ \vec{e_1}) = \begin{bmatrix} 3\\1\\2\\1 \end{bmatrix};$$
$$A^3 \ \vec{e_1} = A \ (A^2 \ \vec{e_1}) = \begin{bmatrix} 4\\5\\5\\5 \end{bmatrix};$$
$$A^4 \ \vec{e_1} = A \ (A^3 \ \vec{e_1}) = \begin{bmatrix} 15\\9\\14\\9 \end{bmatrix}.$$

Therefore, there are 15 paths of length 4 from V_1 to V_1 , 9 paths of length 4 from V_1 to V_2 , 14 paths of length 4 from V_1 to V_3 , and 9 paths of length 4 from V_1 to V_4 .

3. The following 4 points in \mathbb{R}^3 ,

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \text{ and } \begin{bmatrix} 3\\2\\1 \end{bmatrix},$$

are the vertices of a parallelogram. Compute its area.

Solution. Form the vectors \vec{u} , \vec{v} , and \vec{w} that subtend from the first point to the other three points. Evidently,

$$\vec{u} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \text{and} \ \vec{w} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}.$$

As $\vec{u} + \vec{v} = \vec{w}$, the parallelogram in question is spanned by the 2 vectors \vec{u} and \vec{v} . Consequently, the area of the parallelogram is $|\vec{u} \times \vec{v}|$. We compute that

$$\vec{u} \times \vec{v} = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}.$$

Therefore, the area is $\sqrt{2}$.

4. Determine whether the following matrix is invertible, and if so, compute its inverse.

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Solution. Let A denote the 4×4 matrix above. Then A is invertible if and only if the reduced row echelon form of the 4×8 matrix $[A \ I]$ has the form $[I \ B]$. Furthermore, in the case where A is invertible, $B = A^{-1}$. Therefore, we row reduce

_

$$\begin{bmatrix} 4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Swap rows 1 and 4 and swap rows 2 and 3:

Γ1	0	0	1	0	0	0	1]	
0	1	2	0	0	0	1	0	
0	0	2	0	0	1	0	0	
4	0	0	0	1	0	0	0	

Subtract 4 times the first row from the fourth row:

1	0	0	1	0	0	0	1	
0	1	2	0	0	0	1	0	
0	0	2	0	0	1	0	0	•
0	0	0	-4	1	0	0	-4	

Multiply row 3 by 1/2:

1	0	0	1	0	0	0	1	
0	1	2	0	0	0	1	0	
0	0	1	0	0	1/2	0	0	•
0	0	0	-4	1	0	0	-4	

Subtract 2 time row 3 from row 2; also multiply row 4 by -1/4:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1/4 & 0 & 0 & 1 \end{bmatrix}.$$

Subtract row 4 from row 1:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1/4 & 0 & 0 & 1 \end{bmatrix}.$$

As this last matrix is in echelon form and the first 4 columns are the 4×4 identity matrix, it follows that A is invertible and

$$A^{-1} = \begin{bmatrix} 1/4 & 0 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 1/2 & 0 & 0\\ -1/4 & 0 & 0 & 1 \end{bmatrix}.$$

5. Show directly from the definition that the vectors

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

are a basis for \mathbb{R}^3 .

Solution. The vectors are a basis provided they are both linearly independent and span.

To see that the vectors are linearly independent, assume that $x_1, x_2, x_3 \in \mathbb{R}$ and

$$x_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + x_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 1\\1\\1 \end{bmatrix} = 0.$$
(1)

We wish to show that this assumption implies $x_1 = x_2 = x_3 = 0$. But (1) implies that

$$\begin{bmatrix} x_1 + x_2 + x_3 \\ x_2 + x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

or equivalently, the system

$$x_1 + x_2 + x_3 = 0$$
$$x_2 + x_3 = 0$$
$$x_3 = 0$$

obtains. As the only solution to this system is $x_1 = x_2 = x_3 = 0$, it follows that the vectors are linearly independent.

To see that the vectors span, we need to show that each vector $\vec{b} \in \mathbb{R}^3$ can be represented as a linear combination of the vectors. Accordingly, assume that

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^3.$$

We wish to show that there exist scalars $x_1, x_2, x_3 \in \mathbb{R}$ such that

$$x_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + x_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix},$$

or equivalently, the system

$$x_1 + x_2 + x_3 = b_1$$
$$x_2 + x_3 = b_2$$
$$x_3 = b_3$$

is solvable. As $x_3 = b_3$, $x_2 = b_2 - b_3$, $x_1 = b_1 - b_2$ this system, the vectors span.